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The limits of the applicability of the Polarised Infrared (Fourier transform infrared) spectroscopy technique, which
is used to measure the order parameters of biaxial liquid crystals, is investigated in detail for different experimen-
tal geometries and cell thicknesses. General expressions for the transmittance of the polarised infrared radiation
by a biaxial liquid crystal material in planar and homeotropic cells are obtained in the general case of oblique
incidence. These expressions are then simplified in the limiting cases of thin and thick cells, and in both cases the
relationship is established between the cell transmittance and the components of the imaginary part of the infrared
molecular permittivity. It is shown that simple expressions, used in the literature to extract the values of the biax-
ial order parameters, are valid only for thin cells and in specific geometries when light propagates along one of
the optical axes of the material. For thicker cells typical for experimental conditions, approximate expressions are
obtained which are to be used to reveal the order parameters of biaxial liquid crystals. Various types of experimen-
tal geometries are discussed including those suitable for measurements of the order parameters, and those to be
avoided.

Keywords: infrared spectroscopy; biaxial nematics; theory; biaxial order parameters

1. Introduction

Polarised Fourier transform infrared (FT-IR) spec-
troscopy has been found to be a very powerful
method for the investigation of liquid crystals on a
microscopic level. IR spectroscopy has been used to
study the orientational order in biaxial nematic and
smectic phases including the smectic C and ferro-
electric chiral smectic C (smectic C∗) liquid crystal
(LC) phases [1–4]. Orientational order parameters and
the tilt angle of the primary director in the smec-
tic C∗ phase have also been measured using FT-IR
spectroscopy [5].

In particular, infrared spectroscopy is the only
experimental technique which has been used to mea-
sure the complete set of orientational order param-
eters of biaxial nematic materials [2] composed of
tetrapode molecules which have been discovered
recently [2, 6, 7]. Biaxial nematic materials possess a
lower symmetry and are characterised by four orien-
tational order parameters, S, P, D and C, where P
specifies the biaxial order of long molecular axes and
C characterises the independent biaxial order of short
molecular axes. Recently a number of biaxial order
parameters, including the higher order ones, have also
been measured using polarised Raman spectroscopy
[8] in biaxial nematic materials composed of bent-core
molecules [9, 10].

∗Corresponding author. Email: m.osipov@strath.ac.uk

It should be noted, however, that extracting the
information on the order parameters from the IR spec-
troscopy data requires a theoretical formalism, which
should follow from the general theory of IR absorb-
tion. So far such a general theory has only been
developed for the case of isotropic fluids, and no gen-
eral expressions for IR absorption in LCs are available
in the literature.

The development of the general theory of IR
absorption in uniaxial and biaxial LCs is very impor-
tant because it enables one not only to derive simple
expressions, which can be used in practice to estimate
the order parameters, but also to identify clearly the
experimental geometries, for which these expressions
are valid, and the limits of their applicability. In the
existing literature the corresponding theoretical for-
mulas are often used without a justification, and it is
generally not known when they are actually valid.

The purpose of this paper is to develop a general
theory of infrared absorption in biaxial LCs, to obtain
simple approximate expressions for the transmittance
of the polarised IR radiation in the limiting cases of
thin and thick cells, and to find out in which experi-
mental geometries these expressions can be applied.

The paper is arranged as follows. In Section 2 we
derive approximate expressions for the components of
the imaginary part of the susceptibility in terms of the
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1570 M.V. Gorkunov and M.A. Osipov

orientational order parameters of a biaxial LC phase.
Section 3 is devoted to the general analysis of the
transmission properties of a LC cell with tilted director
orientation. In this section the general expressions are
obtained for the IR transmittance and reflectance of
a LC cell at oblique incidence of the incoming beam.
Special limiting cases are considered in Section 4, while
Section 5 contains our conclusions.

2. Infrared permittivity

Consider an anisotropic LC molecule with long axis
a and short axes b and c. Let the molecule contain
a specific chemical bond absorbing the IR radiation.
We describe the most general orientation of the cor-
responding transition dipole by its unit vector µ spec-
ified by the angles α and β (see Figure 1). Assuming
that the symmetry of the molecular distribution is not
lower than C2h, we have to account for a symmetric
transition dipole µ′, which transforms into µ upon
rotation by the angle π around the C2h symmetry axis.
Accordingly,

µ = a cos α + b sin α cos β + c sin α sin β, (1)

µ′ = −a cos α − b sin α cos β + c sin α sin β. (2)

For frequencies of IR radiation, ω, close to the
absorption band, the whole molecular absorption
σ̂ (ω) (the imaginary part of the molecular suscepti-
bility) is determined by the orientation of the corre-
sponding transition dipoles µ and µ′, and it can be
expressed as

σij(ω) = σ (ω)
2

(μiμj + μ′
iμ

′
j), (3)

where we have averaged over ‘up’ and ‘down’ ori-
entations and introduced the scalar strength of the
transition σ .

a
α

α

ββ

µ

µ'

b
c

Figure 1. Skew brick possessing the C2k symmetry of LC
molecules and a schematic of the molecular axes and transi-
tion dipoles.

Formation of the overall LC permittivity from
molecular susceptibilities is, in fact, a complex issue.
In particular, various mutually interacting molecular
fragments contribute collectively to the real part of the
permittivity tensor. The formation of the imaginary
part on the top of the resonant IR absorption peak
is easier to understand since the dominating transition
dipoles are well localised and are not likely to interact
substantially. Neglecting the mutual influence of the
absorbing dipoles in different molecules, we write the
LC susceptibility as χij = χ ′

ij + iρσij, where χ ′ is the
real part of the susceptibility, and ρ is the number den-
sity of LC molecules. The LC infrared permittivity can
be written in the form

εij(ω) = ε′
ij(ω) + iε′′

ij(ω), (4)

where the imaginary part is determined by the averages
of the products of the transition dipoles:

ε′′
ij(ω) = ρσ (ω)

2
〈μiμj + μ′

iμ
′
j〉. (5)

Substituting Equations (1) and (2) into Equation
(5), taking into account the fact that aiaj + bibj +
cicj = δij and introducing the symmetric traceless ten-
sor order parameters of a biaxial LC as described in
[11],

Qij = 〈aiaj − δij

3
〉, (6)

�ij = 〈aibj + biaj〉, (7)

Bij = 〈bibj − cicj〉, (8)

one obtains

ε′′
ij(ω) = ρσ (ω)

×
[

1
3
δij + P2( cos α)Qij + 1

2
sin2 α cos2 βBij +1

2
sin 2 α cos β�ij

]
.

(9)

One notes that in general the main axes of all three
tensor order parameters on the right-hand side of
Equation (9) do not necessarily coincide. However, if
the deviations of the tensor eigenframes are small, one
may assume that all three contributions to the over-
all permittivity tensor are diagonal in the same frame,
which we denote as (n, m, h). Then the tensor order
parameters can be expressed in the common frame:

Qij = S (ninj − 1
3
δij) + 1

2
P (mimj − hihj), (10)
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Liquid Crystals 1571

Bij = D (ninj − 1
3
δij) + C (mimj − hihj), (11)

�ij = G (ninj − 1
3
δij) + H (mimj − hihj), (12)

and the definitions of the six scalar order parameters
are given in our recent paper [11].

Accordingly, the permittivity of LC can be
expressed as

εij = εnninj + εmmimj + εhhihj, (13)

where the principal values of the imaginary part of
the permittivity are explicitly expressed in terms of the
order parameters:

ε′′
n = ρσ

3
[1 + 2SP2( cos α) + D sin2 α cos2 β + G sin 2 α cos β],

(14)

ε′′
m = ρσ

6
[2 + (3P − 2S) P2( cos α)

+(3C − D) sin2
α cos2 β + (3H − G) sin 2 α cos β],

(15)

ε′′
h = ρσ

6
[2 − (3P + 2S) P2( cos α)

−(3C + D) sin2
α cos2 β − (3H + G) sin 2 α cos β].

(16)

Therefore, the actual experimental task is to deter-
mine the values of the permittivities ε′′

n , ε′′
m, ε′′

h . To
determine all six scalar order parameters one should
use at least two different absorption resonances (tran-
sition bands with different α and β) and solve the
corresponding two sets of Equations (14)–(16). In cer-
tain experimental geometries, however, not all three
permittivity eigenvalues can be determined simultane-
ously and the use of more transition bands may be
necessary. Another possibility is to neglect the addi-
tional order parameters G and H which are expected
to be generally smaller than the others. For molecules
of D2h symmetry and higher (i.e. for molecules with
three mutually orthogonal mirror planes) the order
parameters G and H vanish identically.

3. Infrared absorption

In this section we develop the theory of the IR absorp-
tion for the most important geometries of the LC cell.

Depending on the substrates, a LC material can have
either planar or homeotropic alignment, i.e. the pri-
mary director n can either be perpendicular or parallel
to the substrate. Next, in both orientations two pos-
sible orthogonal directions of the polarisation of the
incident IR radiation can be employed.

In some cases the primary director n may tilt with
respect to the substrate. It is shown below that this
affects the IR absorption substantially if the incident
wave is polarised in the symmetry plane of the phase
(transverse magnetic, TM, polarisation).

3.1 Tilted homeotropic cell
In the tilted homeotropic cell, the primary director
n is tilted with respect to the substrate normal. The
geometry of the tilted homeotropic cell is presented in
Figure 2. In such a cell the director n is tilted while
the secondary director h is parallel to the substrate.
This geometry corresponds to a smectic LC in the C-
phase with smectic layers parallel to the substrate or to
a biaxial nematic LC with the tilted primary director n.

In such a case the apparent permittivity tensor in
the cell frame is non-diagonal and has four non-zero
components

εxx = εm cos2 θ + εn sin2
θ , (17)

εyy = εh, (18)

εzz = εn cos2 θ + εm sin2
θ , (19)

εxz = εzx = (εm − εn) sin θ cos θ . (20)

The eigenvalues of the permittivity tensor related with
the LC ordering via Equations (14)–(16) and the tilt
angle of the primary LC axis can be expressed as

z
x

θy
dn

m

h

EH
ϕ

γ

Figure 2. Schematic of the setup of IR absorbance in a
homeotropically aligned cell.
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1572 M.V. Gorkunov and M.A. Osipov

tan 2 θ = 2εxz

εxx − εzz
, (21)

εn = 1
2

(εxx + εzz) − εxz

sin 2 θ
, (22)

εm = 1
2

(εxx + εzz) + εxz

sin 2 θ
, (23)

εh = εyy. (24)

Consider the transmission properties of an
anisotropic slab with non-zero permittivity tensor
components εxx, εyy, εzz and εxz = εzx. The slab
is sandwiched between transparent thick isotropic
plates with real permittivity εs. Choosing the plane of
incidence as that of the tilting plane, we decouple the
transverse electric (TE) and TM polarisations. This
means that those waves are reflected, absorbed and
transmitted independently and the transmittance of
an arbitrarily polarised wave can be written as

T = TTM cos2 ϕ + TTE sin2
ϕ, (25)

where φ characterises the incident polarisation (see
Figure 2).

Consider first the TM-polarised incident wave.
Spatially-dependent electric fields of the light waves
can be expressed as complex plane waves. Above
the cell, at z < 0, there is an incident wave (of unit
amplitude for simplicity) and a reflected wave with
amplitude r:

Ex = cos γ e−iωt+ik0 sin γ x[eik0 cos γ z − re−ik0 cos γ z],
(26)

Ez = sin γ e−iωt+ik0 sin γ x[−eik0 cos γ z − re−ik0 cos γ z],
(27)

where k0 = √
εsω/c.

Below the slab, at z > d, only the transmitted wave
with the amplitude τ exists and

Ex = τ cos γ e−iωt+ik0 sin γ x+ik0 cos γ (z−d), (28)

Ez = −τ sin γ e−iωt+ik0 sin γ x+ik0 cos γ (z−d). (29)

Inside the slab, the fields can generally be expressed
as sums of the contributions from the waves travelling
in opposite directions:

Ex = e−iωt+ik0 sin γ x[E+
x eiκ+z + E−

x e−iκ−z], (30)

Ez = e−iωt+ik0 sinγ x[E+
z eiκ+z + E−

z e−iκ−z]. (31)

Substituting the components of the electric
displacement Dx = εxxEx + εxzEz and Dz = εxzEx +
εzzEz into Gauss’s law ∇.D = 0 one obtains

E±
z (k0 sin γ εxz ± κ±εzz) = −E±

x (k0 sin γ εxx ± κ±εxz).
(32)

Next, using Maxwell’s equations ∇ × E = −1/c ∂B/∂t
and ∇ × B = 1/c ∂D/∂t one obtains for the only com-
ponent of the magnetic induction ω/c B±

y = ±κ±E±
x −

k0 sin γ E±
z and, on the other hand, k0 sin γ B±

y =
−ω/c(εxzEx + εzzEz). Excluding the magnetic induc-
tion and using Equation (32) it is possible to write the
dispersion equation for the propagating constants K±
in the form

(κ±)2εzz ± 2κ±k0εxz sinγ + k2
0εxx sin2

γ

= (εxxεzz − ε2
xz)ω2/c2

. (33)

This equation apparently has different solutions for
the waves travelling upwards and downwards in the
tilted anisotropic slab, and one can readily obtain that

κ± = κ ± �, (34)

where

κ =
√

(εxxεzz − ε2
xz)(εzzω2/c2 − k2

0 sin2
γ )/εzz, (35)

and where the square root with a positive imaginary
part is to be used in the complex case, while

� = −k0 sin γ
εxz

εzz
. (36)

The continuous boundary conditions for Ex and Dz at
z = 0 are

(1 − r) cos γ = E+
x + E−

x , (37)

−εs(1 + r) sin γ = εxz(E+
x + E−

x ) + εzz(E+
z + E−

z ),
(38)

while those at z = d yield

τ cos γ = E+
x eiκ+d + E−

x e−iκ−d, (39)
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Liquid Crystals 1573

−εsτ sinγ =εxz(E+
x eiκ+d + E−

x e−iκ−d)

+ εzz(E+
z eiκ+d + E−

z e−iκ−d).
(40)

Together with Equation (32), Equations (37)–(40)
form a system of simultaneous linear equations for the
remaining six unknown field amplitudes. The straight-
forward solution yields for the transmitted amplitude

τ = −4eid�k0κ cosγ
(
εzzεxx − ε2

xz

)
εzzεs

×{[k0 cosγ
(
εzzεxx − ε2

xz

) − κεsεzz
]2

eidκ

− [
k0 cos γ

(
εzzεxx − ε2

xz

) + κεsεzz
]2

e−idκ}−1, (41)

while the reflected wave amplitude is expressed as

r = 2i
(

k2
0 cos2 γ

(
εzzεxx − ε2

xz

)2 − κ2ε2
s ε

2
zz

)
sin(dκ)

×{[k0 cosγ
(
εzzεxx − ε2

xz

) − κεsεzz
]2

eidκ

− [
k0 cos γ

(
εzzεxx − ε2

xz

) + κεsεzz
]2

e−idκ}−1. (42)

The transmittance TTM(γ ) and reflectance RTM(γ ) of
the sample are expressed as

TTM(γ ) = |t|2, and RTM(γ ) = |r|2, (43)

and those relations provide the formal exact solution
to the general problem of TM transmittance.

We see that the TM-polarised wave tests all three
components εxx, εzz and εxz simultaneously. The
complexity of this exact solution does not allow a
straightforward extraction of the permittivity compo-
nents. However, in certain difficult situations, when,
for example, the orientation of the LC main axes is
unknown, one may fit the data for different angles of
incidence by Equations (41) and (42) and determine
the permittivity main values and main axes.

At the same time, if the orientation of the LC is
reasonably restricted, one may consider several limit-
ing cases of practical interest, which provide a more
transparent connection between the IR transmittance
and the LC permittivity. This will be demonstrated in
the next section.

For the TE-polarised IR radiation, the electric field
is orthogonal to the director n and always tests the per-
mittivity component εyy = εh. Already the simple case
of normal incidence is sufficient for determining this

permittivity component. The corresponding expres-
sion can be obtained from the TM transmittance by
putting γ = 0, εxz = 0 and replacing εxx by εyy = εh.
This yields

TTE(0) = 16εs|εh|
|(√εh − √

εs)2eid
√

εhω/c + (
√

εh + √
εs)2e−id

√
εhω/c|2 .

(44)

3.2 Planar cell with normal incidence
Consider now the absorbance of normally incident IR
radiation in a LC with planar alignment. In this case
the directors n and m of the biaxial LC material are
parallel to the substrate and one can choose the coor-
dinate system along the main axes of the molecular
order:

εxx = εn, εyy = εm, εzz = εh, (45)

while the polarisation of the incident beam can be
specified by the angle φ (see Figure 3).

The incident radiation can be presented as a super-
position of two beams, polarised along the main axes
of the LC with input electric field amplitudes E cos ϕ

and E sin ϕ. These two parts are reflected, transmit-
ted and absorbed independently, which again results
in the well-known dependence of the transmittance on
the polarisation angle:

T(ϕ) = Tn cos2 ϕ + Tm sin2
ϕ. (46)

The expressions for the two fundamental transmit-
tances here can be obtained from the results of the
previous subsection. Indeed, one can set both γ and θ

to zero, notice that the result is independent of εzz, and
set εxx to be equal either to εn or εm to obtain Tn or Tm,
respectively. This yields the following expression:

Tn = 16εs|εn|
|(√εn − √

εs)2eid
√

εnω/c + (
√

εn + √
εs)2e−id

√
εnω/c|2

;

(47)

z

x
y

dn
m

h

E

H
ϕ

Figure 3. Schematic of the setup of IR absorbance in a
planar aligned cell.
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1574 M.V. Gorkunov and M.A. Osipov

the expression for Tm can be obtained by replacement
of εn by εm.

4. Simple limiting cases

4.1 Thin cell
If the cell thickness is comparable with the wavelength
of IR radiation in the LC, κd ≥ 1, the transmission is
affected by multiple reflections (oscillating exponents
in the denominators of T and R). Transmission of
thinner cells (or at larger IR wavelengths) is free of
such complications. In the limit of thin cells we assume
that κd 	 1 and expand (41) in κd to obtain

τ ≈ 1 + i d
ω

c

εzz

(
εxx cos2 γ + εs

) − (εxz cos γ + εs sin γ )
2

2
√

εsεzz cos γ
,

(48)

and

TTM(γ ) ≈ 1 − d
ω

c
1√
εs

M(γ ), (49)

where

M( γ ) = cos γ

[
ε′′

xx − Im
(

ε2
xz

εzz

)]
− sin γ 2εs Im

(
εxz

εzz

)

+ sin2
γ

cos γ
ε′′

zz
ε2

s

|ε2
zz|

.

(50)

It is important to note that in the case of thin cells
the transmittance should be close to 100% as τ ≈ 1 in
the zeroth approximation according to (48).

4.1.1 Normal incidence

Consider now the case of normal incidence for both
homeotropic and planar cells. Putting γ = 0 one
obtains the following simplified expression for the TM
transmittance of a thin homeotropic cell:

TTM ≈ 1 − d
ω

c
ε′′

xx√
εs

+ d
ω

c
1√
εs

Im
[
ε2

xz

εzz

]
. (51)

The second term corresponds to the simple result
which has been used in the literature (see, e.g., (1)).
The absorbed energy is proportional to the imagi-
nary part of the permittivity along the polarisation
of the incident wave. However, if the phase is tilted
with respect to the substrates, and the LC is substan-
tially anisotropic, the last term provides a substantial
correction. The physical origin of this counterintuitive

correction is the change of IR polarisation when the
radiation enters the LC. It propagates in the form of
an extraordinary wave, which is not transversal, and
the electric field tests the permittivity not along the x-
axis but along a certain direction in the xz-plane which
depends on the parameters of the system.

Accordingly, the result reduces to the form used in
[1] only if one assumes that one of the axes (i.e. one of
the directors) of the biaxial LC phase is perpendicular
to the substrate. This case corresponds to the non-
tilted alignment of the biaxial LC in a homeotropic
or planar cell. Then εzx = 0, the last term vanishes and
the transmittance of a thin cell is given by the following
simple equation:

TTM ≈ 1 − d
ω

c
ε′′

xx√
εs

. (52)

For the TE polarisation in homeotropic geometry
as well as for both polarisations in the planar cell,
the transmittance of a thin cell is given by the similar
simple equation

TTE,n,m ≈ 1 − d
ω

c

ε′′
h,n,m√
εs

. (53)

According to this equation and depending on the
geometry, the transmittance of a thin cell is directly
related to the corresponding component of the imag-
inary part of the dielectric susceptibility of the LC
material at a given frequency, which can be expressed
in terms of the orientational order parameters of the
LC. Thus this enables one, in principle, to determine
the order parameters of the biaxial LC using different
polarisations of the incoming light wave and different
orientations of the primary director (normal or par-
allel to the substrate). These equations have been used
in [1, 2, 4] to determine the order parameters of biaxial
nematic and smectic C LCs. It should be noted, how-
ever, that this simple result is justified only in the case
of thin films when the transmission is of the order of
one. This result is also valid only if the director of the
LC phase is not tilted with respect to the substrate, or
if the light is polarised in the direction perpendicular
to the tilt plane.

4.2 Thick cells
In most of the experiments, however, the transmittance
is very low which indicates that the real systems are
closer to the opposite limiting case of thick cells. On
the top of a resonance the LC absorbs the most part of
the IR radiation and only a few percent of the energy is
transmitted. One can neglect multiple reflections in the
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Liquid Crystals 1575

cell by neglecting the first exponentially small term in
the denominator of Equation (41). Then one obtains

τ = 4
ei(κ+�)dεzzεsk0κ

(
εzzεxx − ε2

xz

)
cos γ(

k0 cos γ
(
εzz εxx − ε2

xz

) + εzz εs κ
)2 (54)

and the transmittance is expressed as

TTM = 16
ε2

s k2
0 cos2 γ |εzz|2|εzzεxx − ε2

xz|2|κ|2
|k0 cos γ

(
εzz εxx − ε2

xz

) + εzz εs κ|4 e−2d Im(κ+�).

(55)

4.2.1 Normal incidence

Similar to the transmittance of thin cells, the gen-
eral equation can be simplified in the case of normal
incidence. Remarkably, for normal incidence the trans-
mittance can be explicitly written as a function of the
propagation constant

T = 16 k2
0|κ|2 e−2 Im(κ)d

|k0 + κ|4 , (56)

where the propagation constant κ is given by one of
the following equations which correspond to the four
cases of interest:

κTM = ω/c
√

εxx − ε2
xz/εzz, (57)

for the TM beam and the homeotropic cell,

κTE = ω/c
√

εh, (58)

for the TE beam and the homeotropic cell, and

κn,m = ω/c
√

εn,m, (59)

for the planar cell and different polarisations of the
incoming beam.

It appears to be useful to consider the natural log-
arithm of the transmittances of thick cells. Indeed, for
(56) the logarithm of the transmittance can be written
in the form

ln (T) = C − 2d
ω

c
Im(

√
ε), (60)

where C stems from the logarithm of the pre-
exponential factor and ε equals

√
εxx − ε2

xz/εzz, εh, εn

or εm depending on the geometry. If the cell thick-
ness d is large enough, the last term in (60) is pre-
dominant and determines the overall variation of the
transmittance.

Equation (60) is still too complicated to be used
directly in the measurements of the order parameters.

However, a useful approximation can be made if one
assumes that on the top of the resonance the permit-
tivity is dominated by the imaginary part, i.e. for each
component

ε � iε′′. (61)

The square roots in Equation (60) can then be approxi-
mated as

√
ε � (1 + i)

√
ε′′/2 and the main term in the

logarithm of the transmittances takes the simple form

ln (T) = C − d
ω

c

√
2ε′′, (62)

allowing for the explicit determination of the compo-
nents of the imaginary parts of the permittivity.

5. Conclusions

In this paper we have derived general expressions for
the transmittance and reflectance of the obliquely inci-
dent polarised IR light by a biaxial LC cell. We have
considered both the homeotropic cell with the primary
director normal or tilted with respect to the substrates,
and the planar cell with the LC directors parallel to the
substrates. Those general expressions can be used for
determining the LC order parameters in the most diffi-
cult case: for the unknown orientation of the LC main
axes and arbitrary cell thickness.

It has been shown that the general expressions sig-
nificantly simplify in the limiting cases of thin and
thick cells for the normally incident IR radiation and
LC oriented orthogonally to the substrates.

The simple approximate expressions, which have
been used in the literature to measure the biaxial order
parameters, have only been obtained in the case of
thin cells and normal incidence, when the light wave is
polarised along one of the optical axes of a biaxial LC
phase. In this case the transmittance is directly related
to the corresponding component of the imaginary part
of the IR dielectric permittivity, which is explicitly
expressed in terms of the order parameters of the LC
phase. In contrast, if the light is not polarised along
any of the directors of a biaxial LC phase (for exam-
ple, when the polarisation is parallel to the tilt plane in
the smectic C phase), even the simplified expressions
for the transmittance appear to be too complicated
and cannot be used to determine the order parameters.
Thus the tilted geometries should be avoided.

This is related to the fact that in a tilted geometry
the electric field of the light wave in the biaxial medium
(when the polarisation of the incoming beam is not
parallel to an optical axis) is no longer transverse, and
thus it is not parallel to the polarisation direction of
the incoming beam. As a result, the electric field tests
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several components of the polarisability tensor simul-
taneously, and the expressions for the transmittance
contain a number of unknown parameters.

Thus one concludes that simple expressions for the
IR transmittance, which have been used in the litera-
ture, correspond to the case of thin films and are valid
only when the transmittance is of the order of one and
one of the LC main axes is exactly orthogonal to the
substrates.

In a typical experiment, the transmittance is of the
order of a few percent, and thus the system is closer to
the limiting case of thick cells with exponentially low
transmittance. Simple approximate expressions have
also been obtained in the case of thick cells for the nor-
mal incidence. If the resonant peak in the IR spectrum
of the LC material is sufficiently high, the compo-
nents of the imaginary part of the IR permittivity are
approximately proportional to the square of the loga-
rithm of the transmittance. This is very different from
the case of thin cells, where the same components are
proportional to the transmittance itself.

The approximate relations (60) and (62) obtained
in the case of thick cells can be used to determine the
orientational order parameters of biaxial nematic and
smectic C LCs provided that several different geome-
tries and/or different resonance peaks are employed
to obtain the sufficient number of independent equa-
tions for the order parameters. If the orientation of the
mirror plane of the biaxial LC material can be deter-
mined experimentally (for example, by ellipsometry), it
is possible to use the geometry in which the incoming
beam propagates perpendicularly to the mirror plane.
In this case the light beam propagates along an opti-
cal axis of the material while the other two optical
axes are parallel to the plane. Even if their particu-
lar orientation is unknown, the principal values of the
transmittance (which correspond to the polarisation
of the light wave along one of the two optical axes in
the mirror plane) can be determined experimentally by
rotating the polariser and fitting the transmittance by
Equations (25) and (46). Using two different resonance
peaks one may obtain four independent equations

which can be used to determine the values of the tra-
ditional set of four orientational order parameters of
the biaxial LC phase.

As discussed in Section 2, in the general case biax-
ial LCs composed of molecules of low symmetry are
characterised by six independent orientational order
parameters. The full set of six order parameters can
also be determined experimentally if the additional
experimental geometry is used in which light propa-
gates along the mirror plane and is polarised in the
direction perpendicular to the plane.
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